
	

SQL	Injection	Examples	

	

Source	:	http://www.unixwiz.net/techtips/sql-injection.html	

A	customer	asked	that	we	check	out	his	intranet	site,	which	was	used	by	the	company's	employees	and	
customers.	This	was	part	of	a	larger	security	review,	and	though	we'd	not	actually	used	SQL	injection	to	
penetrate	a	network	before,	we	were	pretty	familiar	with	the	general	concepts.	We	were	completely	
successful	in	this	engagement,	and	wanted	to	recount	the	steps	taken	as	an	illustration.		

Table	of	Contents	

• The	Target	Intranet		

• Schema	field	mapping		

• Finding	the	table	name		

• Finding	some	users		

• Brute-force	password	guessing		

• The	database	isn't	readonly		

• Adding	a	new	member		

• Mail	me	a	password		

• Other	approaches		

• Mitigations		

• Other	resources		

"SQL	Injection"	is	subset	of	the	an	unverified/unsanitized	user	input	vulnerability	("buffer	overflows"	are	
a	different	subset),	and	the	idea	is	to	convince	the	application	to	run	SQL	code	that	was	not	intended.	If	
the	application	is	creating	SQL	strings	naively	on	the	fly	and	then	running	them,	it's	straightforward	to	
create	some	real	surprises.		

We'll	note	that	this	was	a	somewhat	winding	road	with	more	than	one	wrong	turn,	and	others	with	
more	experience	will	certainly	have	different	--	and	better	--	approaches.	But	the	fact	that	we	were	
successful	does	suggest	that	we	were	not	entirely	misguided.		

There	have	been	other	papers	on	SQL	injection,	including	some	that	are	much	more	detailed,	but	this	
one	shows	the	rationale	of	discovery	as	much	as	the	process	of	exploitation.		

	
	

The	Target	Intranet	

This	appeared	to	be	an	entirely	custom	application,	and	we	had	no	prior	knowledge	of	the	application	
nor	access	to	the	source	code:	this	was	a	"blind"	attack.	A	bit	of	poking	showed	that	this	server	ran	
Microsoft's	IIS	6	along	with	ASP.NET,	and	this	suggested	that	the	database	was	Microsoft's	SQL	server:	
we	believe	that	these	techniques	can	apply	to	nearly	any	web	application	backed	by	any	SQL	server.		

The	login	page	had	a	traditional	username-and-password	form,	but	also	an	email-me-my-password	link;	
the	latter	proved	to	be	the	downfall	of	the	whole	system.		

When	entering	an	email	address,	the	system	presumably	looked	in	the	user	database	for	that	email	
address,	and	mailed	something	to	that	address.	Since	my	email	address	is	not	found,	it	wasn't	going	to	
send	me	anything.		

So	the	first	test	in	any	SQL-ish	form	is	to	enter	a	single	quote	as	part	of	the	data:	the	intention	is	to	see	if	
they	construct	an	SQL	string	literally	without	sanitizing.	When	submitting	the	form	with	a	quote	in	the	
email	address,	we	get	a	500	error	(server	failure),	and	this	suggests	that	the	"broken"	input	is	actually	
being	parsed	literally.	Bingo.		

We	speculate	that	the	underlying	SQL	code	looks	something	like	this:		

SELECT	fieldlist	

		FROM	table	

	WHERE	field	=	'$EMAIL';	

Here,	$EMAIL	is	the	address	submitted	on	the	form	by	the	user,	and	the	larger	query	provides	the	
quotation	marks	that	set	it	off	as	a	literal	string.	We	don't	know	the	specific	names	of	the	fields	or	table	
involved,	but	we	do	know	their	nature,	and	we'll	make	some	good	guesses	later.		

When	we	enter	steve@unixwiz.net'	-	note	the	closing	quote	mark	-	this	yields	constructed	SQL:		

SELECT	fieldlist	

		FROM	table	

	WHERE	field	=	'steve@unixwiz.net'';	

when	this	is	executed,	the	SQL	parser	find	the	extra	quote	mark	and	aborts	with	a	syntax	error.	How	this	
manifests	itself	to	the	user	depends	on	the	application's	internal	error-recovery	procedures,	but	it's	
usually	different	from	"email	address	is	unknown".	This	error	response	is	a	dead	giveaway	that	user	
input	is	not	being	sanitized	properly	and	that	the	application	is	ripe	for	exploitation.		

Since	the	data	we're	filling	in	appears	to	be	in	the	WHERE	clause,	let's	change	the	nature	of	that	clause	
in	an	SQL	legal	way	and	see	what	happens.	By	entering	anything'	OR	'x'='x,	the	resulting	SQL	is:		

SELECT	fieldlist	

		FROM	table	

	WHERE	field	=	'anything'	OR	'x'='x';	

Because	the	application	is	not	really	thinking	about	the	query	-	merely	constructing	a	string	-	our	use	of	
quotes	has	turned	a	single-component	WHERE	clause	into	a	two-component	one,	and	the	'x'='x'	clause	
is	guaranteed	to	be	true	no	matter	what	the	first	clause	is	(there	is	a	better	approach	for	this	"always	
true"	part	that	we'll	touch	on	later).		

But	unlike	the	"real"	query,	which	should	return	only	a	single	item	each	time,	this	version	will	essentially	
return	every	item	in	the	members	database.	The	only	way	to	find	out	what	the	application	will	do	in	this	
circumstance	is	to	try	it.	Doing	so,	we	were	greeted	with:		

	

Your	login	information	has	been	mailed	to	random.person@example.com.		

	

Our	best	guess	is	that	it's	the	first	record	returned	by	the	query,	effectively	an	entry	taken	at	random.	
This	person	really	did	get	this	forgotten-password	link	via	email,	which	will	probably	come	as	surprise	to	
him	and	may	raise	warning	flags	somewhere.		

We	now	know	that	we're	able	to	manipulate	the	query	to	our	own	ends,	though	we	still	don't	know	
much	about	the	parts	of	it	we	cannot	see.	But	we	have	observed	three	different	responses	to	our	
various	inputs:		

• "Your	login	information	has	been	mailed	to	email"		

• "We	don't	recognize	your	email	address"		

• Server	error		

The	first	two	are	responses	to	well-formed	SQL,	while	the	latter	is	for	bad	SQL:	this	distinction	will	be	
very	useful	when	trying	to	guess	the	structure	of	the	query.		

Schema	field	mapping	

The	first	steps	are	to	guess	some	field	names:	we're	reasonably	sure	that	the	query	includes	"email	
address"	and	"password",	and	there	may	be	things	like	"US	Mail	address"	or	"userid"	or	"phone	
number".	We'd	dearly	love	to	perform	a	SHOW	TABLE,	but	in	addition	to	not	knowing	the	name	of	the	
table,	there	is	no	obvious	vehicle	to	get	the	output	of	this	command	routed	to	us.		

So	we'll	do	it	in	steps.	In	each	case,	we'll	show	the	whole	query	as	we	know	it,	with	our	own	snippets	
shown	specially.	We	know	that	the	tail	end	of	the	query	is	a	comparison	with	the	email	address,	so	let's	
guess	email	as	the	name	of	the	field:		

SELECT	fieldlist	

		FROM	table	

	WHERE	field	=	'x'	AND	email	IS	NULL;	--';	

The	intent	is	to	use	a	proposed	field	name	(email)	in	the	constructed	query	and	find	out	if	the	SQL	is	
valid	or	not.	We	don't	care	about	matching	the	email	address	(which	is	why	we	use	a	dummy	'x'),	and	
the	--	marks	the	start	of	an	SQL	comment.	This	is	an	effective	way	to	"consume"	the	final	quote	provided	
by	application	and	not	worry	about	matching	them.		

If	we	get	a	server	error,	it	means	our	SQL	is	malformed	and	a	syntax	error	was	thrown:	it's	most	likely	
due	to	a	bad	field	name.	If	we	get	any	kind	of	valid	response,	we	guessed	the	name	correctly.	This	is	the	
case	whether	we	get	the	"email	unknown"	or	"password	was	sent"	response.		

Note,	however,	that	we	use	the	AND	conjunction	instead	of	OR:	this	is	intentional.	In	the	SQL	schema	
mapping	phase,	we're	not	really	concerned	with	guessing	any	particular	email	addresses,	and	we	do	not	
want	random	users	inundated	with	"here	is	your	password"	emails	from	the	application	-	this	will	surely	
raise	suspicions	to	no	good	purpose.	By	using	the	AND	conjunction	with	an	email	address	that	couldn't	
ever	be	valid,	we're	sure	that	the	query	will	always	return	zero	rows	and	never	generate	a	password-
reminder	email.		

Submitting	the	above	snippet	indeed	gave	us	the	"email	address	unknown"	response,	so	now	we	know	
that	the	email	address	is	stored	in	a	field	email.	If	this	hadn't	worked,	we'd	have	tried	email_address	or	
mail	or	the	like.	This	process	will	involve	quite	a	lot	of	guessing.		

Next	we'll	guess	some	other	obvious	names:	password,	user	ID,	name,	and	the	like.	These	are	all	done	
one	at	a	time,	and	anything	other	than	"server	failure"	means	we	guessed	the	name	correctly.		

SELECT	fieldlist	

		FROM	table	

	WHERE	email	=	'x'	AND	userid	IS	NULL;	--';	

As	a	result	of	this	process,	we	found	several	valid	field	names:		

• email		

• passwd		

• login_id		

• full_name		

There	are	certainly	more	(and	a	good	source	of	clues	is	the	names	of	the	fields	on	forms),	but	a	bit	of	
digging	did	not	discover	any.	But	we	still	don't	know	the	name	of	the	table	that	these	fields	are	found	in	
-	how	to	find	out?		

Finding	the	table	name	

The	application's	built-in	query	already	has	the	table	name	built	into	it,	but	we	don't	know	what	that	
name	is:	there	are	several	approaches	for	finding	that	(and	other)	table	names.	The	one	we	took	was	to	
rely	on	a	subselect.		

A	standalone	query	of		

SELECT	COUNT(*)	FROM	tabname	

Returns	the	number	of	records	in	that	table,	and	of	course	fails	if	the	table	name	is	unknown.	We	can	
build	this	into	our	string	to	probe	for	the	table	name:		

SELECT	email,	passwd,	login_id,	full_name	

		FROM	table	

	WHERE	email	=	'x'	AND	1=(SELECT	COUNT(*)	FROM	tabname);	--';	

We	don't	care	how	many	records	are	there,	of	course,	only	whether	the	table	name	is	valid	or	not.	By	
iterating	over	several	guesses,	we	eventually	determined	that	members	was	a	valid	table	in	the	
database.	But	is	it	the	table	used	in	this	query?	For	that	we	need	yet	another	test	using	table.field	
notation:	it	only	works	for	tables	that	are	actually	part	of	this	query,	not	merely	that	the	table	exists.		

SELECT	email,	passwd,	login_id,	full_name	

		FROM	members	

	WHERE	email	=	'x'	AND	members.email	IS	NULL;	--';	

When	this	returned	"Email	unknown",	it	confirmed	that	our	SQL	was	well	formed	and	that	we	had	
properly	guessed	the	table	name.	This	will	be	important	later,	but	we	instead	took	a	different	approach	
in	the	interim.		

Finding	some	users	

At	this	point	we	have	a	partial	idea	of	the	structure	of	the	members	table,	but	we	only	know	of	one	
username:	the	random	member	who	got	our	initial	"Here	is	your	password"	email.	Recall	that	we	never	
received	the	message	itself,	only	the	address	it	was	sent	to.	We'd	like	to	get	some	more	names	to	work	
with,	preferably	those	likely	to	have	access	to	more	data.		

The	first	place	to	start,	of	course,	is	the	company's	website	to	find	who	is	who:	the	"About	us"	or	
"Contact"	pages	often	list	who's	running	the	place.	Many	of	these	contain	email	addresses,	but	even	
those	that	don't	list	them	can	give	us	some	clues	which	allow	us	to	find	them	with	our	tool.		

The	idea	is	to	submit	a	query	that	uses	the	LIKE	clause,	allowing	us	to	do	partial	matches	of	names	or	
email	addresses	in	the	database,	each	time	triggering	the	"We	sent	your	password"	message	and	email.	
Warning:	though	this	reveals	an	email	address	each	time	we	run	it,	it	also	actually	sends	that	email,	
which	may	raise	suspicions.	This	suggests	that	we	take	it	easy.		

We	can	do	the	query	on	email	name	or	full	name	(or	presumably	other	information),	each	time	putting	
in	the	%	wildcards	that	LIKE	supports:		

SELECT	email,	passwd,	login_id,	full_name	

		FROM	members	

	WHERE	email	=	'x'	OR	full_name	LIKE	'%Bob%';	

Keep	in	mind	that	even	though	there	may	be	more	than	one	"Bob",	we	only	get	to	see	one	of	them:	this	
suggests	refining	our	LIKE	clause	narrowly.		

Ultimately,	we	may	only	need	one	valid	email	address	to	leverage	our	way	in.		

Brute-force	password	guessing	

One	can	certainly	attempt	brute-force	guessing	of	passwords	at	the	main	login	page,	but	many	systems	
make	an	effort	to	detect	or	even	prevent	this.	There	could	be	logfiles,	account	lockouts,	or	other	devices	
that	would	substantially	impede	our	efforts,	but	because	of	the	non-sanitized	inputs,	we	have	another	
avenue	that	is	much	less	likely	to	be	so	protected.		

We'll	instead	do	actual	password	testing	in	our	snippet	by	including	the	email	name	and	password	
directly.	In	our	example,	we'll	use	our	victim,	bob@example.com	and	try	multiple	passwords.		

SELECT	email,	passwd,	login_id,	full_name	

		FROM	members	

	WHERE	email	=	'bob@example.com'	AND	passwd	=	'hello123';	

This	is	clearly	well-formed	SQL,	so	we	don't	expect	to	see	any	server	errors,	and	we'll	know	we	found	the	
password	when	we	receive	the	"your	password	has	been	mailed	to	you"	message.	Our	mark	has	now	
been	tipped	off,	but	we	do	have	his	password.		

This	procedure	can	be	automated	with	scripting	in	perl,	and	though	we	were	in	the	process	of	creating	
this	script,	we	ended	up	going	down	another	road	before	actually	trying	it.		

The	database	isn't	readonly	

So	far,	we	have	done	nothing	but	query	the	database,	and	even	though	a	SELECT	is	readonly,	that	
doesn't	mean	that	SQL	is.	SQL	uses	the	semicolon	for	statement	termination,	and	if	the	input	is	not	
sanitized	properly,	there	may	be	nothing	that	prevents	us	from	stringing	our	own	unrelated	command	at	
the	end	of	the	query.		

The	most	drastic	example	is:		

SELECT	email,	passwd,	login_id,	full_name	

		FROM	members	

	WHERE	email	=	'x';	DROP	TABLE	members;	--';		--	Boom!	

The	first	part	provides	a	dummy	email	address	--	'x'	--	and	we	don't	care	what	this	query	returns:	we're	
just	getting	it	out	of	the	way	so	we	can	introduce	an	unrelated	SQL	command.	This	one	attempts	to	drop	
(delete)	the	entire	members	table,	which	really	doesn't	seem	too	sporting.		

This	shows	that	not	only	can	we	run	separate	SQL	commands,	but	we	can	also	modify	the	database.	This	
is	promising.		

Adding	a	new	member	

Given	that	we	know	the	partial	structure	of	the	members	table,	it	seems	like	a	plausible	approach	to	
attempt	adding	a	new	record	to	that	table:	if	this	works,	we'll	simply	be	able	to	login	directly	with	our	
newly-inserted	credentials.		

This,	not	surprisingly,	takes	a	bit	more	SQL,	and	we've	wrapped	it	over	several	lines	for	ease	of	
presentation,	but	our	part	is	still	one	contiguous	string:		

SELECT	email,	passwd,	login_id,	full_name	

		FROM	members	

	WHERE	email	=	'x';	

								INSERT	INTO	members	('email','passwd','login_id','full_name')		

								VALUES	('steve@unixwiz.net','hello','steve','Steve	Friedl');--';	

Even	if	we	have	actually	gotten	our	field	and	table	names	right,	several	things	could	get	in	our	way	of	a	
successful	attack:		

1. We	might	not	have	enough	room	in	the	web	form	to	enter	this	much	text	directly	(though	this	
can	be	worked	around	via	scripting,	it's	much	less	convenient).		

2. The	web	application	user	might	not	have	INSERT	permission	on	the	members	table.		

3. There	are	undoubtedly	other	fields	in	the	members	table,	and	some	may	require	initial	values,	
causing	the	INSERT	to	fail.		

4. Even	if	we	manage	to	insert	a	new	record,	the	application	itself	might	not	behave	well	due	to	
the	auto-inserted	NULL	fields	that	we	didn't	provide	values	for.		

5. A	valid	"member"	might	require	not	only	a	record	in	the	members	table,	but	associated	
information	in	other	tables	(say,	"accessrights"),	so	adding	to	one	table	alone	might	not	be	
sufficient.		

In	the	case	at	hand,	we	hit	a	roadblock	on	either	#4	or	#5	-	we	can't	really	be	sure	--	because	when	going	
to	the	main	login	page	and	entering	in	the	above	username	+	password,	a	server	error	was	returned.	
This	suggests	that	fields	we	did	not	populate	were	vital,	but	nevertheless	not	handled	properly.		

A	possible	approach	here	is	attempting	to	guess	the	other	fields,	but	this	promises	to	be	a	long	and	
laborious	process:	though	we	may	be	able	to	guess	other	"obvious"	fields,	it's	very	hard	to	imagine	the	
bigger-picture	organization	of	this	application.		

We	ended	up	going	down	a	different	road.		

Mail	me	a	password	

We	then	realized	that	though	we	are	not	able	to	add	a	new	record	to	the	members	database,	we	can	
modify	an	existing	one,	and	this	proved	to	be	the	approach	that	gained	us	entry.		

From	a	previous	step,	we	knew	that	bob@example.com	had	an	account	on	the	system,	and	we	used	our	
SQL	injection	to	update	his	database	record	with	our	email	address:		

SELECT	email,	passwd,	login_id,	full_name	

		FROM	members	

	WHERE	email	=	'x';	

						UPDATE	members	

						SET	email	=	'steve@unixwiz.net'	

						WHERE	email	=	'bob@example.com';	

After	running	this,	we	of	course	received	the	"we	didn't	know	your	email	address",	but	this	was	
expected	due	to	the	dummy	email	address	provided.	The	UPDATE	wouldn't	have	registered	with	the	
application,	so	it	executed	quietly.		

We	then	used	the	regular	"I	lost	my	password"	link	-	with	the	updated	email	address	-	and	a	minute	later	
received	this	email:		

From:	system@example.com	

To:	steve@unixwiz.net	

Subject:	Intranet	login	

	

This	email	is	in	response	to	your	request	for	your	Intranet	log	in	information.	

Your	User	ID	is:	bob	

Your	password	is:	hello	

Now	it	was	now	just	a	matter	of	following	the	standard	login	process	to	access	the	system	as	a	high-
ranked	MIS	staffer,	and	this	was	far	superior	to	a	perhaps-limited	user	that	we	might	have	created	with	
our	INSERT	approach.		

We	found	the	intranet	site	to	be	quite	comprehensive,	and	it	included	-	among	other	things	-	a	list	of	all	
the	users.	It's	a	fair	bet	that	many	Intranet	sites	also	have	accounts	on	the	corporate	Windows	network,	
and	perhaps	some	of	them	have	used	the	same	password	in	both	places.	Since	it's	clear	that	we	have	an	
easy	way	to	retrieve	any	Intranet	password,	and	since	we	had	located	an	open	PPTP	VPN	port	on	the	
corporate	firewall,	it	should	be	straightforward	to	attempt	this	kind	of	access.		

We	had	done	a	spot	check	on	a	few	accounts	without	success,	and	we	can't	really	know	whether	it's	
"bad	password"	or	"the	Intranet	account	name	differs	from	the	Windows	account	name".	But	we	think	
that	automated	tools	could	make	some	of	this	easier.		

Other	Approaches	

In	this	particular	engagement,	we	obtained	enough	access	that	we	did	not	feel	the	need	to	do	much	
more,	but	other	steps	could	have	been	taken.	We'll	touch	on	the	ones	that	we	can	think	of	now,	though	
we	are	quite	certain	that	this	is	not	comprehensive.		

We	are	also	aware	that	not	all	approaches	work	with	all	databases,	and	we	can	touch	on	some	of	them	
here.		

Use	xp_cmdshell		

Microsoft's	SQL	Server	supports	a	stored	procedure	xp_cmdshell	that	permits	what	amounts	to	arbitrary	
command	execution,	and	if	this	is	permitted	to	the	web	user,	complete	compromise	of	the	webserver	is	
inevitable.		

What	we	had	done	so	far	was	limited	to	the	web	application	and	the	underlying	database,	but	if	we	can	
run	commands,	the	webserver	itself	cannot	help	but	be	compromised.	Access	to	xp_cmdshell	is	usually	
limited	to	administrative	accounts,	but	it's	possible	to	grant	it	to	lesser	users.		

Map	out	more	database	structure		

Though	this	particular	application	provided	such	a	rich	post-login	environment	that	it	didn't	really	seem	
necessary	to	dig	further,	in	other	more	limited	environments	this	may	not	have	been	sufficient.		

Being	able	to	systematically	map	out	the	available	schema,	including	tables	and	their	field	structure,	
can't	help	but	provide	more	avenues	for	compromise	of	the	application.		

One	could	probably	gather	more	hints	about	the	structure	from	other	aspects	of	the	website	(e.g.,	is	
there	a	"leave	a	comment"	page?	Are	there	"support	forums"?).	Clearly,	this	is	highly	dependent	on	the	
application	and	it	relies	very	much	on	making	good	guesses.		

Mitigations	

We	believe	that	web	application	developers	often	simply	do	not	think	about	"surprise	inputs",	but	
security	people	do	(including	the	bad	guys),	so	there	are	three	broad	approaches	that	can	be	applied	
here.		

Sanitize	the	input		

It's	absolutely	vital	to	sanitize	user	inputs	to	insure	that	they	do	not	contain	dangerous	codes,	whether	
to	the	SQL	server	or	to	HTML	itself.	One's	first	idea	is	to	strip	out	"bad	stuff",	such	as	quotes	or	
semicolons	or	escapes,	but	this	is	a	misguided	attempt.	Though	it's	easy	to	point	out	some	dangerous	
characters,	it's	harder	to	point	to	all	of	them.		

The	language	of	the	web	is	full	of	special	characters	and	strange	markup	(including	alternate	ways	of	
representing	the	same	characters),	and	efforts	to	authoritatively	identify	all	"bad	stuff"	are	unlikely	to	
be	successful.		

Instead,	rather	than	"remove	known	bad	data",	it's	better	to	"remove	everything	but	known	good	data":	
this	distinction	is	crucial.	Since	-	in	our	example	-	an	email	address	can	contain	only	these	characters:		

abcdefghijklmnopqrstuvwxyz	

ABCDEFGHIJKLMNOPQRSTUVWXYZ	

0123456789	

@.-_+	

There	is	really	no	benefit	in	allowing	characters	that	could	not	be	valid,	and	rejecting	them	early	-	
presumably	with	an	error	message	-	not	only	helps	forestall	SQL	Injection,	but	also	catches	mere	typos	
early	rather	than	stores	them	into	the	database.		

Sidebar	on	email	addresses	

	

It's	important	to	note	here	that	email	addresses	in	particular	are	troublesome	to	validate	
programmatically,	because	everybody	seems	to	have	his	own	idea	about	what	makes	one	"valid",	and	
it's	a	shame	to	exclude	a	good	email	address	because	it	contains	a	character	you	didn't	think	about.		

The	only	real	authority	is	RFC	2822	(which	encompasses	the	more	familiar	RFC822),	and	it	includes	a	
fairly	expansive	definition	of	what's	allowed.	The	truly	pedantic	may	well	wish	to	accept	email	addresses	
with	ampersands	and	asterisks	(among	other	things)	as	valid,	but	others	-	including	this	author	-	are	
satisfied	with	a	reasonable	subset	that	includes	"most"	email	addresses.		

Those	taking	a	more	restrictive	approach	ought	to	be	fully	aware	of	the	consequences	of	excluding	these	
addresses,	especially	considering	that	better	techniques	(prepare/execute,	stored	procedures)	obviate	
the	security	concerns	which	those	"odd"	characters	present.		

	

Be	aware	that	"sanitizing	the	input"	doesn't	mean	merely	"remove	the	quotes",	because	even	"regular"	
characters	can	be	troublesome.	In	an	example	where	an	integer	ID	value	is	being	compared	against	the	
user	input	(say,	a	numeric	PIN):		

SELECT	fieldlist	

		FROM	table	

	WHERE	id	=	23	OR	1=1;		--	Boom!	Always	matches!	

In	practice,	however,	this	approach	is	highly	limited	because	there	are	so	few	fields	for	which	it's	
possible	to	outright	exclude	many	of	the	dangerous	characters.	For	"dates"	or	"email	addresses"	or	
"integers"	it	may	have	merit,	but	for	any	kind	of	real	application,	one	simply	cannot	avoid	the	other	
mitigations.		

Escape/Quotesafe	the	input		

Even	if	one	might	be	able	to	sanitize	a	phone	number	or	email	address,	one	cannot	take	this	approach	
with	a	"name"	field	lest	one	wishes	to	exclude	the	likes	of	Bill	O'Reilly	from	one's	application:	a	quote	is	
simply	a	valid	character	for	this	field.		

One	includes	an	actual	single	quote	in	an	SQL	string	by	putting	two	of	them	together,	so	this	suggests	
the	obvious	-	but	wrong!	-	technique	of	preprocessing	every	string	to	replicate	the	single	quotes:		

SELECT	fieldlist	

		FROM	customers	

	WHERE	name	=	'Bill	O''Reilly';		--	works	OK	

However,	this	naïve	approach	can	be	beaten	because	most	databases	support	other	string	escape	
mechanisms.	MySQL,	for	instance,	also	permits	\'	to	escape	a	quote,	so	after	input	of	\';	DROP	TABLE	
users;	--	is	"protected"	by	doubling	the	quotes,	we	get:		

SELECT	fieldlist	

		FROM	customers	

	WHERE	name	=	'\'';	DROP	TABLE	users;	--';		--	Boom!	

The	expression	'\''	is	a	complete	string	(containing	just	one	single	quote),	and	the	usual	SQL	shenanigans	
follow.	It	doesn't	stop	with	backslashes	either:	there	is	Unicode,	other	encodings,	and	parsing	oddities	
all	hiding	in	the	weeds	to	trip	up	the	application	designer.		

Getting	quotes	right	is	notoriously	difficult,	which	is	why	many	database	interface	languages	provide	a	
function	that	does	it	for	you.	When	the	same	internal	code	is	used	for	"string	quoting"	and	"string	
parsing",	it's	much	more	likely	that	the	process	will	be	done	properly	and	safely.		

Some	examples	are	the	MySQL	function	mysql_real_escape_string()	and	perl	DBD	method	$dbh-
>quote($value).		

These	methods	must	be	used.		

Use	bound	parameters	(the	PREPARE	statement)		

Though	quotesafing	is	a	good	mechanism,	we're	still	in	the	area	of	"considering	user	input	as	SQL",	and	a	
much	better	approach	exists:	bound	parameters,	which	are	supported	by	essentially	all	database	
programming	interfaces.	In	this	technique,	an	SQL	statement	string	is	created	with	placeholders	-	a	
question	mark	for	each	parameter	-	and	it's	compiled	("prepared",	in	SQL	parlance)	into	an	internal	
form.		

Later,	this	prepared	query	is	"executed"	with	a	list	of	parameters:		

Example	in	perl	

$sth	=	$dbh->prepare("SELECT	email,	userid	FROM	members	WHERE	email	=	?;");	

	

$sth->execute($email);	

Thanks	to	Stefan	Wagner,	this	demonstrates	bound	parameters	in	Java:		

Insecure	version	

Statement	s	=	connection.createStatement();	

ResultSet	rs	=	s.executeQuery("SELECT	email	FROM	member	WHERE	name	=	"	

																													+	formField);	//	*boom*	

Secure	version	

PreparedStatement	ps	=	connection.prepareStatement(

				"SELECT	email	FROM	member	WHERE	name	=	?");	

ps.setString(1,	formField);	

ResultSet	rs	=	ps.executeQuery();	

Here,	$email	is	the	data	obtained	from	the	user's	form,	and	it	is	passed	as	positional	parameter	#1	(the	
first	question	mark),	and	at	no	point	do	the	contents	of	this	variable	have	anything	to	do	with	SQL	
statement	parsing.	Quotes,	semicolons,	backslashes,	SQL	comment	notation	-	none	of	this	has	any	
impact,	because	it's	"just	data".	There	simply	is	nothing	to	subvert,	so	the	application	is	be	largely	
immune	to	SQL	injection	attacks.		

There	also	may	be	some	performance	benefits	if	this	prepared	query	is	reused	multiple	times	(it	only	has	
to	be	parsed	once),	but	this	is	minor	compared	to	the	enormous	security	benefits.	This	is	probably	the	
single	most	important	step	one	can	take	to	secure	a	web	application.		

Limit	database	permissions	and	segregate	users		

In	the	case	at	hand,	we	observed	just	two	interactions	that	are	made	not	in	the	context	of	a	logged-in	
user:	"log	in"	and	"send	me	password".	The	web	application	ought	to	use	a	database	connection	with	
the	most	limited	rights	possible:	query-only	access	to	the	members	table,	and	no	access	to	any	other	
table.		

The	effect	here	is	that	even	a	"successful"	SQL	injection	attack	is	going	to	have	much	more	limited	
success.	Here,	we'd	not	have	been	able	to	do	the	UPDATE	request	that	ultimately	granted	us	access,	so	
we'd	have	had	to	resort	to	other	avenues.		

Once	the	web	application	determined	that	a	set	of	valid	credentials	had	been	passed	via	the	login	form,	
it	would	then	switch	that	session	to	a	database	connection	with	more	rights.		

It	should	go	almost	without	saying	that	sa	rights	should	never	be	used	for	any	web-based	application.		

Use	stored	procedures	for	database	access		

When	the	database	server	supports	them,	use	stored	procedures	for	performing	access	on	the	
application's	behalf,	which	can	eliminate	SQL	entirely	(assuming	the	stored	procedures	themselves	are	
written	properly).		

By	encapsulating	the	rules	for	a	certain	action	-	query,	update,	delete,	etc.	-	into	a	single	procedure,	it	
can	be	tested	and	documented	on	a	standalone	basis	and	business	rules	enforced	(for	instance,	the	"add	
new	order"	procedure	might	reject	that	order	if	the	customer	were	over	his	credit	limit).		

For	simple	queries	this	might	be	only	a	minor	benefit,	but	as	the	operations	become	more	complicated	
(or	are	used	in	more	than	one	place),	having	a	single	definition	for	the	operation	means	it's	going	to	be	
more	robust	and	easier	to	maintain.		

Note:	it's	always	possible	to	write	a	stored	procedure	that	itself	constructs	a	query	dynamically:	this	
provides	no	protection	against	SQL	Injection	-	it's	only	proper	binding	with	prepare/execute	or	direct	
SQL	statements	with	bound	variables	that	provide	this	protection.		

Isolate	the	webserver		

Even	having	taken	all	these	mitigation	steps,	it's	nevertheless	still	possible	to	miss	something	and	leave	
the	server	open	to	compromise.	One	ought	to	design	the	network	infrastructure	to	assume	that	the	bad	
guy	will	have	full	administrator	access	to	the	machine,	and	then	attempt	to	limit	how	that	can	be	
leveraged	to	compromise	other	things.		

For	instance,	putting	the	machine	in	a	DMZ	with	extremely	limited	pinholes	"inside"	the	network	means	
that	even	getting	complete	control	of	the	webserver	doesn't	automatically	grant	full	access	to	
everything	else.	This	won't	stop	everything,	of	course,	but	it	makes	it	a	lot	harder.		

Configure	error	reporting		

The	default	error	reporting	for	some	frameworks	includes	developer	debugging	information,	and	this	
cannot	be	shown	to	outside	users.	Imagine	how	much	easier	a	time	it	makes	for	an	attacker	if	the	full	
query	is	shown,	pointing	to	the	syntax	error	involved.		

This	information	is	useful	to	developers,	but	it	should	be	restricted	-	if	possible	-	to	just	internal	users.		

Note	that	not	all	databases	are	configured	the	same	way,	and	not	all	even	support	the	same	dialect	of	
SQL	(the	"S"	stands	for	"Structured",	not	"Standard").	For	instance,	most	versions	of	MySQL	do	not	
support	subselects,	nor	do	they	usually	allow	multiple	statements:	these	are	substantially	complicating	
factors	when	attempting	to	penetrate	a	network.		

	

We'd	like	to	emphasize	that	though	we	chose	the	"Forgotten	password"	link	to	attack	in	this	particular	
case,	it	wasn't	really	because	this	particular	web	application	feature	is	dangerous.	It	was	simply	one	of	
several	available	features	that	might	have	been	vulnerable,	and	it	would	be	a	mistake	to	focus	on	the	
"Forgotten	password"	aspect	of	the	presentation.		

This	Tech	Tip	has	not	been	intended	to	provide	comprehensive	coverage	on	SQL	injection,	or	even	a	
tutorial:	it	merely	documents	the	process	that	evolved	over	several	hours	during	a	contracted	
engagement.	We've	seen	other	papers	on	SQL	injection	discuss	the	technical	background,	but	still	only	
provide	the	"money	shot"	that	ultimately	gained	them	access.		

But	that	final	statement	required	background	knowledge	to	pull	off,	and	the	process	of	gathering	that	
information	has	merit	too.	One	doesn't	always	have	access	to	source	code	for	an	application,	and	the	
ability	to	attack	a	custom	application	blindly	has	some	value.		

Thanks	to	David	Litchfield	and	Randal	Schwartz	for	their	technical	input	to	this	paper,	and	to	the	great	
Chris	Mospaw	for	graphic	design	(©	2005	by	Chris	Mospaw,	used	with	permission).		

	

